院长信箱 | 书记信箱 | 纪检信箱 | 省信访平台 | 服务大厅 | 虚拟校园 | 网上博物馆
科研工作

陶瓷技术

您当前的位置: 网站首页 >> 科研工作 >> 陶瓷技术 >> 正文
碳化硅陶瓷工艺流程
作者: 点击数: 时间:2011-02-26 00:00

SiC陶瓷的生产工艺简述如下:

一、SiC粉末的合成:

SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有:

1、Acheson法:

这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。

2、化合法:

在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合成高纯度的β-SiC粉末。

3、热分解法:

使聚碳硅烷或三氯甲基硅等有机硅聚合物在1200~1500℃的温度范围内发生分解反应,由此制得亚微米级的β-SiC粉末。

4、气相反相法:

使SiCl4和SiH4等含硅的气体以及CH4、C3H8、C7H8和(Cl4等含碳的气体或使CH3SiCl3、(CH3)2 SiCl2和Si(CH3)4等同时含有硅和碳的气体在高温下发生反应,由此制备纳米级的β-SiC超细粉。

二、碳化硅陶瓷的烧结

1、无压烧结

1974年美国GE公司通过在高纯度β-SiC细粉中同时加入少量的B和C,采用无压烧结工艺,于2020℃成功地获得高密度SiC陶瓷。目前,该工艺已成为制备SiC陶瓷的主要方法。美国GE公司研究者认为:晶界能与表面能之比小于1.732是致密化的热力学条件,当同时添加B和C后,B固溶到SiC中,使晶界能降低,C把SiC粒子表面的SiO2还原除去,提高表面能,因此B和C的添加为SiC的致密化创造了热力学方面的有利条件。然而,日本研究人员却认为SiC的致密并不存在热力学方面的限制。还有学者认为,SiC的致密化机理可能是液相烧结,他们发现:在同时添加B和C的β-SiC烧结体中,有富B的液相存在于晶界处。关于无压烧结机理,目前尚无定论。

以α-SiC为原料,同时添加B和C,也同样可实现SiC的致密烧结。

研究表明:单独使用B和C作添加剂,无助于SiC陶瓷充分致密。只有同时添加B和C时,才能实现SiC陶瓷的高密度化。为了SiC的致密烧结,SiC粉料的比表面积应在10m2/g以上,且氧含量尽可能低。B的添加量在0.5%左右,C的添加量取决于SiC原料中氧含量高低,通常C的添加量与SiC粉料中的氧含量成正比。

最近,有研究者在亚微米SiC粉料中加入Al2O3和Y2O3,在1850℃~2000℃温度下实现SiC的致密烧结。由于烧结温度低而具有明显细化的微观结构,因而,其强度和韧性大大改善。

2、热压烧结

50年代中期,美国Norton公司就开始研究B、Ni、Cr、Fe、Al等金属添加物对SiC热压烧结的影响。实验表明:Al和Fe是促进SiC热压致密化的最有效的添加剂。

有研究者以Al2O3为添加剂,通过热压烧结工艺,也实现了SiC的致密化,并认为其机理是液相烧结。此外,还有研究者分别以B4C、B或B与C,Al2O3和C、Al2O3和Y2O3、Be、B4C与C作添加剂,采用热压烧结,也都获得了致密SiC陶瓷。

研究表明:烧结体的显微结构以及力学、热学等性能会因添加剂的种类不同而异。如:当采用B或B的化合物为添加剂,热压SiC的晶粒尺寸较小,但强度高。当选用Be作添加剂,热压SiC陶瓷具有较高的导热系数。

3、热等静压烧结:

近年来,为进一步提高SiC陶瓷的力学性能,研究人员进行了SiC陶瓷的热等静压工艺的研究工作。研究人员以B和C为添加剂,采用热等静压烧结工艺,在1900℃便获得高密度SiC烧结体。更进一步,通过该工艺,在2000℃和138MPa压力下,成功实现无添加剂SiC陶瓷的致密烧结。

研究表明:当SiC粉末的粒径小于0.6μm时,即使不引入任何添加剂,通过热等静压烧结,在1950℃即可使其致密化。如选用比表面积为24m2/g的SiC超细粉,采用热等静压烧结工艺,在1850℃便可获得高致密度的无添加剂SiC陶瓷。

另外,Al2O3是热等静压烧结SiC陶瓷的有效添加剂。而C的添加对SiC陶瓷的热等静压烧结致密化不起作用,过量的C甚至会抑制SiC陶瓷的烧结。

4、反应烧结:

SiC的反应烧结法最早在美国研究成功。反应烧结的工艺过程为:先将α-SiC粉和石墨粉按比例混匀,经干压、挤压或注浆等方法制成多孔坯体。在高温下与液态Si接触,坯体中的C与渗入的Si反应,生成β-SiC,并与α-SiC相结合,过量的Si填充于气孔,从而得到无孔致密的反应烧结体。反应烧结SiC通常含有8%的游离Si。因此,为保证渗Si的完全,素坯应具有足够的孔隙度。一般通过调整最初混合料中α-SiC和C的含量,α-SiC的粒度级配,C的形状和粒度以及成型压力等手段来获得适当的素坯密度。

实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较多,反应烧结SiC相对较低。另一方面,SiC陶瓷的力学性能还随烧结添加剂的不同而不同。无压烧结、热压烧结和反应烧结SiC陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对HF等超强酸的抗蚀性较差。就耐高温性能比较来看,当温度低于900℃时,几乎所有SiC陶瓷强度均有所提高;当温度超过1400℃时,反应烧结SiC陶瓷抗弯强度急剧下降。(这是由于烧结体中含有一定量的游离Si,当超过一定温度抗弯强度急剧下降所致)对于无压烧结和热等静压烧结的SiC陶瓷,其耐高温性能主要受添加剂种类的影响。

总之,SiC陶瓷的性能因烧结方法不同而不同。一般说来,无压烧结SiC陶瓷的综合性能优于反应烧结的SiC陶瓷,但次于热压烧结和热等静压烧结的SiC陶瓷。

  • Copyright 2011-2022 All rights reserved.   闽ICP备:11004174号  

    违法和不良信息举报中心 举报电话:0595-23691686
    学院地址:福建省泉州市德化学府路100号


    • 新浪微博

    • 校务微博

    • 团委微博

    • 微信公众号